For decades, the geosciences community has dreamed of and worked towards building simulations that can resolve the time and length scales of deformation patterns in the solid Earth observed both globally and regionally. This includes the slow motion of rocks in the Earth’s deep interior, the motion of tectonic plates, and smaller scale localized deformation in the interior of and at the boundaries between these plates on time scales ranging from thousands to millions of years. Until recently, neither the computational tools, nor the requisite information about how rocks behave at the temperature and pressures of the Earth’s interior were available to allow such simulations with reasonable accuracy. However, with recent advances in the Earth sciences and computing, we are finally at a point where it is possible to develop computational models of the Earth from the deep mantle to the surface. This project is aimed at developing a framework for building a Geodynamic Earth Models, based on the widely used community modeling code ASPECT that the PIs have been building since 2011. These simulations have the potential to provide enormous insight into a wide range of topics, including temporal and spatial variations in the motion and deformation of tectonic plates, the flow of magma and the cycling of water through the Earth’s interior, the structure of the deep Earth, and landscape evolution. All work will be made available to other scientists through open source software and data sets, including tutorials and documentation modules to help others use this work in practice. In addition, the project will create accessible images, videos, and more elaborate educational material that will be shared with high school and early college students through outreach events. Beyond that, the experience this project will build by creating a complex, multi-physics simulation code running on large leadership-level computing facilities is also important for complex codes needed to address many other scientific grand challenges, such as several of NSF’s “Big Ideas”.

This project is about the creation of an Integrated Geodynamic Earth Model for the realistic simulation of the Earth from the core-mantle boundary to the surface on time scales of thousands to millions of years. It will address a series of long-standing questions regarding the physical structure of the solid Earth, global and regional deformation patterns, material cycles determined by plate boundaries, and coupled surface evolution. Assimilation and processing of geophysical data sets will generate a Starting Earth Model providing a detailed description of the Earth’s thermal-chemical-rheological state from the surface to the core-mantle boundary. High-resolution global simulations will use this detailed description of Earth’s physical state to determine how brittle and ductile rheology controls the partitioning of deformation and fault interaction within observed plate boundaries. Building on the Starting Earth Model and global simulations, globally embedded regional simulations will allow us to determine how rheological and buoyancy variations within the Western USA control observed deformation patterns. In combination with fully coupled two-phase fluid transport and reactions, the project will employ globally-embedded regional simulations to estimate global rates and magnitudes of volatile transport within subducting oceanic plates and provide insight into plate boundary and deep mantle volatile flux patterns. Additionally, the project will facilitate the coupling of these simulations to landscape evolution models to determine how surface processes modify temporal variations in subduction dynamics. Finally, this project will lead to the development of new tools for the visualization of these simulation results, and use them for a variety of outreach activities.